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Abstract. Let a trajectory and control pair(x̄, ū) maximize globally the functionalg(x(T )) in the
basic optimal control problem. Then (evidently) any pair(x, u) from the level set of the functional
g corresponding to the valueg(x̄(T )) is also globally optimal and satisfies the Pontryagin maximum
principle. It is shown that this necessary condition for global optimality of(x̄, ū) turns out to be a
sufficient one under the additional assumption of nondegeneracy of the maximum principle for every
pair (x, u) from the above-mentioned level set. In particular, if the pair(x̄, ū) satisfies the Pontryagin
maximum principle which is nondegenerate in the sense that for the HamiltonianH , we have along
the pair(x̄, ū)

max
u
H 6≡ min

u
H on [0, T ],

and if there is no another pair(x, u) such thatg(x(T )) = g(x̄(T )), then(x̄, ū) is a global maximizer.
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1. Introduction

Let us consider a control system

ẋ(t) = f (x(t), u(t)), x(0) = x0, (1.1)

where a measurable functionu : [0, T ] → U with values in a compact setU ⊂
R
l is called a control and an absolutely continuous functionx : [0, T ] → R

n

satisfying (1.1) is called atrajectory corresponding to the controlu. Any pair
(x,u) satisfying (1.1) is calledan admissible pair.

In this paper we provide a test to verify that a given admissible pair(x̄, ū) is a
global solution of the followingbasic optimal control problem.

PROBLEM (P ) Maximize the functional

g(x(T )) (1.2)

over the set of all admissible pairs(x,u).
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The best known test for global optimality stems from the Legendre-Carathéodory
approach to sufficient conditions in the calculus of variations and is based on the
verification function technique (for an account of the earlier application of this
method in optimal control see Krotov, 1993).

In general, a differentiable verification function can fail to exist but it was shown
(see Clarke, 1983) that there always exists a nonsmooth one. A particular choice
is a certain value function, which establishes the link between the verification
function technique and Bellman’s dynamic programming approach (see Bellman,
1957). As with that approach, the method of verification functions becomes more
problematic as the dimensionn increases.

The alternative to the dynaming programming method for finding optimal solu-
tions of optimal control problems is based upon the Pontryagin maximum principle
(see Pontryagin et al., 1962) which gives necessary conditions satisfied by the
optimal controlū and the trajectorȳx in terms of the Hamiltonian (or Pontryagin
pseudo-Hamiltonian in Clarke, 1983)

H(p, x, u) = 〈p, f (x, u)〉
and solutionp̄ of the adjoint equation

˙̄p(t) = −H ′x(p̄(t), x̄(t), ū(t)), p̄(T ) = g′x(x̄(T ))
in the following way.

PONTRYAGIN MAXIMUM PRINCIPLE. If a pair (x̄, ū) is an optimal solution
for the optimal control problem (P ) then for a.a. (almost all)t ∈ [0, T ] one has

H(p̄(t), x̄(t), ū(t)) = max
u∈U

H(p̄(t), x̄(t), u).

The complexity of finding the trajectory and control satisfying the maximum prin-
ciple does not increase essentially with the growth of the dimensionn of the state
vector. But we should note that, in general, the maximum principle is not asuffi-
cientcondition for global optimality of(x̄, ū) . It is only a necessary condition for
optimality and, moreover, it is a necessary condition for merely local optimality of
x̄.

Nevertheless, the maximum principle becomes a sufficient condition for opti-
mality of (x̄, ū) under some additional assumptions about the control system (1.1)
and the functional (1.2). For example, let us assume that the functiong is concave
and the system (1.1) is linear

ẋ(t) = Ax(t) + h(u), (1.3)

whereh : U → R
n is a continuous function. It is well known that in this case

the Pontryagin maximum principle is a sufficient condition for global optimality of
(x̄, ū).
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In the present note we consider sufficient conditions for global optimality of
admissible pairs(x̄, ū)which are based on the maximum principle. But we make no
structural assumptions on the problem’s data such as linearity. Instead, conditions
for global optimality are stated in terms of the level setLg(x̄, ū) of the functiong
(1.2) consisting of all admissible pairs(x,u) of the control system (1.1) satisfying
the equality

g(x(T )) = g(x̄(T )). (1.4)

It is clear that if(x̄, ū) is a globally optimal admissible pair, then every pair(x,u)
from Lg(x̄, ū) is also globally optimal. This implies that each such(x,u) satisfies
the Pontryagin maximum principle:

H(p(t), x(t), u(t)) = max
u∈U

H(p(t), x(t), u), for a.a. t ∈ [0, T ], (1.5)

wherep(t) is the solution of the adjoint equation

ṗ(t) = −H ′x(p(t), x(t), u(t)), p(T ) = g′x(x(T )). (1.6)

Thus we have that a necessary condition for global optimality of(x̄, ū) is the ful-
fillment of the maximum principle (1.5)–(1.6) forany pair (x,u) from the level set
Lg(x̄, ū).

The main result of this note asserts that this necessary condition for global
optimality of the pair(x̄, ū) becomessufficientunder the additional assumption
that the maximum principle (1.5) isnondegeneratefor each pair(x,u) ∈ Lg(x̄, ū),
namely: for any(x,u) ∈ Lg(x̄, ū) there existsτ ∈ [0, T ] such that

max
u∈U

H(x(τ), p(τ), u) > min
u∈U

H(x(τ), p(τ), u). (1.7)

This regularity assumption means that

max
u∈U

H(x(t), p(t), u) 6≡ min
u∈U H(x(t), p(t), u)

on [0, T ] and that the maximum principle (1.5) gives a non-trivial characterization
of the controlu.

Strictly speaking, these sufficient conditions for global optimality are valid un-
der the assumption that the attainability set

AT (x0) = {x(T ) : x is an arbitrary trajectory of (1.1)}
is closed . This is true , for example, whenf (x, u) is affine inu andU is convex,
or for a linear system (1.3).

In the next section we use the concept ofrelaxed control (Warga, 1972) to
formulate analogous necessary and sufficient conditions for global optimality in
the general case of a nonlinear control system (1.1).
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We should note that an approach to global optimality using level sets of the
maximizing functional was suggested in Strekalovskii (1990) for the general prob-
lem of maximizing aconvex functional` on a setC. Necessary conditions from
Strekalovskii (1990) for̄x to be a global maximizer become sufficient under the
additional assumption thatx̄ is not a global minimum of̀ onC. These conditions
must be verified at any pointx ( even outside ofC ) such that̀ (x) = `(x̄). This
increase in the number of necessary conditions to verify is beneficial when they are
used to eliminatēx as a candidate for global maximizer. However, it is desirable to
verify a lesser number of sufficient conditions to insure thatx̄ is a global maximizer.

Such conditions were suggested in Hiriart-Urruty and Ledyaev (1996) where
the problem of maximizing ageneral nonlinearfunctional` on aconvex closed
setC was considered. These sufficient conditions must be verified at points of a
relevant level setonly in C. Thus, even in the case of a convex functional`, the
number of sufficient conditions to verify is less than in Strekalovskii (1990).

Optimal control problems (P ) with convex functionsg for general control sy-
stems(1.1) were considered in Strekalovskii (1995). Under the assumption that the
attainability setAT (x0) is closed (it is assumed erroneously in Strekalovskii (1995,
p.88) that lipschitzness off (x, u) is enough for this) the set of necessary conditions
for global optimality is obtained (it includes relations stated in terms of points lying
outside of the attainability set). It was shown, that under the additional hypothesis
that an admissible pair in question(x̄, ū) is not a global minimum, these necessary
conditions become sufficient ones.

In this note the general optimal control problem withgeneral nonlinearfunction
g is considered. Since the set of relaxed controls is convex, the approach based on
Hiriart-Urruty and Ledyaev (1996) can be adapted to this problem. The sufficient
condition for global optimality is formulated in terms of the Pontryagin maxi-
mum principle and an additional mild nondegeneracy hypothesis for this maximum
principle.

These results are also closely related to conditions for global optimality for the
basic problem in calculus of variations such as obtained in Clarke et al. (1997).

2. Basic assumptions and main theorem

Let Rn be then-dimensional euclidean space with inner product〈·, ·〉 and norm
|x| = 〈x, x〉1/2. The space of continuous functionsx : [0, T ] → R

n equipped with
the norm

‖x‖ = max
t∈[0,T ]

|x(t)|

is denoted byCn, the space of continuous functionsφ : U → R with the norm

‖φ‖C = max
u∈U
|φ(u)|

is denoted byC(U).
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The following assumptions provide the existence and uniqueness of an ab-
solutely continuous solutionx of the equation (1.1) for any controlu.

HYPOTHESIS A.
A1. The functionf (x, u) and its partial derivativef ′x(u, v) are continuous on

R
n ×U .

A2. There exists a constanta > 0 such that for any(x, u) ∈ Rn × U
〈x, f (x, u)〉 ≤ a(1+ |x|2).

Such a solution is called a trajectory corresponding to the controlu. In general,
the set of all trajectories inCn is not closed inCn, so we cannot assert even the
existence of an optimal solution in the optimal control problem (P ). To overcome
this difficulty we use the concept of a relaxed control. This concept originated
from L.C.Young’s theory of generalized curves . In the context of classical optimal
control theory it was introduced in Warga (1962).

Let U ⊂ Rp be a compact set , let frm(U) denote the linear space of Radon
measuresm onU, that is, finite regular Borel measures onU. The weak norm‖ ·‖w
in frm (U) is defined as follow

‖m‖w =
∞∑
i=1

1

2i (1+ ‖φi‖C)
∣∣∣∣∫
U

φi(u)m(du)

∣∣∣∣ , (2.1)

where {φi}∞i=1 is a dense countable subset ofC(U). The setM = rpm(U) of
Radon probability measures is convex and compact in the space( frm (U), ‖ · ‖w).
A measurable functionm : [0, T ] → M is called arelaxed control. It is known (see
Warga, 1972; Krasovskii and Subbotin, 1974) thatm : [0, T ] → M is measurable
if and only if the function

t →
∫
U

φ(u)m(t|du)

is measurable for anyφ ∈ C(U).
The setM of all relaxed controls is convex and sequentially weakly∗ compact

(see Krasovskii and Subbotin, 1974). We recall that weak∗ convergence of the
sequence of relaxed controlsmi to the relaxed controlm means that

lim
i→∞

∫ T

0
dt

∫
U

φ(t, u)mi(t|du) =
∫ T

0
dt

∫
U

φ(t, u)m(t|du)

for any functionφ(t, u) such that the mappingt ∈ [0, T ] → φ(t, ·) ∈ C(U) is
measurable.

Under Hypothesis A, for an arbitrary relaxed controlm there exists a unique
solutionx of the following equation

ẋ(t) = f̃ (x(t),m(t)), x(0) = x0, (2.2)
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where

f̃ (x,m) =
∫
U

f (x, u)m(du).

The pair(x,m) defined by (2.2) is called anadmissible pair.
The important property of the solutionxm of (2.2) corresponding to the relaxed

control m is its continuous dependence uponm in the topology of weak∗ conver-
gence onM. Since the set of relaxed controlsM is weakly∗ compact , this implies
that the set of all trajectories corresponding to relaxed controls is compact inCn.
This implies that there always exists an optimal solution(x̄, m̄) for the following
optimal control problem

PROBLEM (Prel) Maximize the functional (1.2) over the set of all admissible pairs
(x,m) for the system (2.2).

The connection between the original optimal control problem (P ) and the op-
timal control problem (Prel) is established by the fact that any trajectoryxm of the
control system (2.2) can be approximated inCn by trajectoriesxu of (1.1), namely:
for anym ∈M and anyε > 0 there exists a controlu such that

‖xm − xu‖ < ε.
Thus, if (x̄, ū) is an optimal solution for the optimal control problem (P ), then

the pair(x̄, m̄) is an optimal solution for the optimal control problem (Prel) where

m̄(t) = δū(t),
and whereδū(du) is the Dirac measure concentrated on vectorū.

It was mentioned before that we could formulate conditions for global optimal-
ity without using the concept of relaxed control if we assume that the function
f (x, u) is affine inu andU is convex, or if the control system is linear (1.3). Note
that the introduction of relaxed controls in (2.2) is a way to ‘linearize’ an original
control system in the control variable sincef̃ (x,m) in (2.2) is affine with respect
to the new control variablem.

Define the level set of the functional (1.2) consisting of admissible pairs(x,m)
for the control system (2.2) as follows:

Lg(x̄, m̄) = {(x,m) : g(x(T )) = g(x̄(T ))}. (2.3)

For the pair(x,m) we define a solutionp of the adjoint equation

ṗ(t) = −H̃ ′x(p(t), x(t),m(t)), p(T ) = g′(x(T )), (2.4)

where

H̃ (p, x,m) = 〈p, f̃ (x,m)〉.
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Finally we make the following assumption about the functiong in (1.2)

HYPOTHESIS B.The functiong(x) is differentiable.

The main result of this note is given by Theorem 2.1 below.

THEOREM 2.1. Let Hypotheses A,B hold. If a pair(x̄, m̄) is globally optimal in
the optimal control problem (Prel) then the following condition C1 holds:

C1. For any(x,m) ∈ Lg(x̄, m̄) andp defined by (2.4) one has

H̃ (p(t), x(t),m(t)) = max
u∈U

H(p(t), x(t), u) for a.a. t ∈ [0, T ] (2.5)

The condition C1 is sufficient for optimality of a pair(x̄, m̄) if the following
condition C2 of nondegeneracy of the maximum principle (2.5) holds:

C2. For any(x,m) ∈ Lg(x̄, m̄) andp defined by (2.4) one has

max
u∈U

H(x(t), p(t), u) 6≡ min
u∈U

H(x(t), p(t), u) on [0, T ]. (2.6)

Thus, summarily speaking, condition C1 is necessary for global optimality of
(x̄, m̄) and under the additional condition C2 it becomes sufficient, as well.

Of course, the fact that conditions (2.5) and (2.6) should be verified for every
admissible pair from the level setLg(x̄, m̄) complicates the practical application
of such sufficient conditions. We consider now one special case when it is enough
to check the relation (2.6) only for an admissible pair(x̄, m̄) itself.

Consider a linear control system (1.3) and a convex functiong (1.2). In this case
the optimal control problem is calledlinear-convex.

PROPOSITION 2.1. For a linear-convex optimal control problem, condition C2
holds for an admissible pair(x̄, m̄) whenever this pair is not a global minimizer of
the functionalg(x(T )).

Proof. Since(x̄, m̄) is not a global minimizer there exists an admissible pair
(x0,m0) such that

g(x0(T )) < g(x̄(T )).

Fix arbitrary(x,m) from Lg(x̄, m̄) and letp(t) satisfy (2.4). Then it follows from
the convexity ofg for the linear system (1.3) that∫ T

0
(min
u∈U

H(p(t), x(t), u) −max
u∈U

H(p(t), x(t), u))dt

≤
∫ T

0
(H̃ (p(t), x(t),m0(t))− H̃ (p(t), x(t),m(t))dt

= 〈g′x(x(T )), x0(T )− x(T )〉 ≤ g(x0(T ))− g(x(T ))
= g(x0(T ))− g(x̄(T )) < 0.
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This strict inequality implies (2.6). 2

It is well known that for a linear-convex optimal control problem an admissible
pair (x̄, m̄) delivers a global minimum to functional (1.2) if and only if it satisfies
the following minimum principle

H̃ (p̄(t), x̄(t), m̄(t)) = min
u∈U

H(p̄(t), x̄(t), u) for a.a.t ∈ [0, T ]. (2.7)

This means that if(x̄, m̄) does not satisfy the minimum principle, then due to
Proposition 2.1 condition C2 holds for it. If, in addition, C1 holds for(x̄, m̄) then
due to Theorem 2.1(x̄, m̄) is a global maximizer.

It is clear that the converse is also valid for the linear-convex optimal control
problem (P ) if it is non-trivial, in the sense that

max g(x(T )) > min g(x(T )), (2.8)

where maximum and minimum are taken over the set of all admissible trajectories.
Indeed, let(x̄, m̄) be a global maximizer for such a problem ; then it is not a

global minimizer and does not satisfy the minimum principle (2.7). Thus, we have
proved

COROLLARY 2.1. Let the linear-convex optimal control problem satisfy (2.8).
Then the admissible pair(x̄, m̄) is global maximizer if and only if it does not satisfy
the minimum principle (2.7) and condition C1 holds.

Note that for the optimal control problem for a linear system (1.3) we can use
an ordinary measurable controlu instead of a relaxed one. Then the maximum
principle (1.5) replaces (2.5) and should be verified for any admissible pair(x,u)
satisfying (1.4).

3. Proof of the main theorem

If (x̄, m̄) is a globally optimal pair in the optimal control problem (Prel) then any
(x,m) ∈ Lg(x̄, m̄) is also globally optimal. Then condition C1 follows imme-
diately from the classical Pontryagin maximum principle. Nevertheless we present
here a proof of (2.5) based on the sliding variations method, not only for the sake of
completeness of exposition, but also because this is a convenient way to introduce
new notations.

For fixed (x,m) ∈ Lg(x̄, m̄) we choose an arbitrary relaxed controlm′ and
define a sliding variationmλ of the relaxed controlm

mλ(t) = (1− λ)m(t)+ λm′(t) (3.1)

whereλ ∈ [0,1].
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Due to convexity ofM the functionmλ is a relaxed control and the trajectory
xλ of (2.2) corresponding to this control satisfies the following equation

ẋλ(t) = f̃ (xλ(t),m(t))+ λ(f̃ (xλ(t),m′(t))− f̃ (xλ(t),m(t))), xλ(0) = x0.

It is easy to see that

xλ(t) = x(t)+ λ1(t)+ r(λ, t),
where1(t) is a solution of the following ‘equation in variations’

1̇(t) = f̃ ′x(x(t),m(t))1(t) + f̃ (x(t),m′(t))− f̃ (x(t),m(t)), 1(0) = 0,
(3.2)

andr(λ, t)/λ converges to 0 uniformly on[0, T ] asλ ↓ 0.
Since(x,m) is optimal we have that

lim
λ↓0

g(xλ(T ))− g(x(T ))
λ

≤ 0.

In view of the representation forxλ(t) it implies that

0≥ 〈g′(x(T )),1(T )〉 =
∫ T

0
[H̃ (p(t), x(t),m′(t))− H̃ (p(t), x(t),m(t))]dt,

(3.3)

wherep(t) is defined in (2.4).
The last relation in (3.3) follows directly from properties of solutions of the

adjoint equation (2.4) and the representation below for1(t)

1(t) =
∫ t

0
8(t, s)[f̃ (x(s),m′(s))− f̃ (x(s),m(s))]ds,

where8(t, s) is the fundamental matrix solution of linear equation

ż(t) = f̃ ′x(x(t),m(t))z(t).
It is clear that for any Radon probability measurem ∈M

H̃(p, x,m) ≤ max
u∈U

H(p, x, u).

It follows from Filippov Theorem on measurable selectors (see Warga, 1972; Clarke,
1983) that there exists measurable controlu′ such that

H(p(t), x(t), u′(t)) = max
u∈U

H(p(t), x(t), u) for a.a.t ∈ [0, T ].

By choosing the relaxed controlm′(t) = δu′(t) we derive from (3.3)

0≥
∫ T

0
[max
u∈U

H(p(t), x(t), u)− H̃ (p(t), x(t),m(t))]dt.
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Because of the previous inequality we have that the integrand in this relation is
non-negative, which implies that it equals 0 almost everywhere on[0, T ]. Thus,
(x,m) satisfies the maximum principle (2.5) and condition C1 is proved.

Now we prove that under condition C2 on the nondegeneracy of maximum
principle the condition C1 is sufficient for global optimality of(x̄, m̄).

Let us assume to the contrary that there exists an admissible pair(x̂, m̂) such
that

g(x̂(T )) > g(x̄(T )). (3.4)

Consider the following optimal control problem:
Minimize

J (m′) =
∫ T

0
‖m′(t)− m̂(t)‖wdt (3.5)

over the set of all admissible pairs(x′,m′) of (2.2) satisfying

g(x′(T )) ≤ g(x̄(T )). (3.6)

Since the functional (3.5) is weakly∗ lower semicontinuous onM andg(x′(T ))
continuously depends uponm′, there exists an optimal solution of this problem
(3.5)–(3.6). We denote the optimal solution for this problem by(x,m).

LEMMA 3.1. Under condition (3.4) the pair(x,m) belongs to the level setLg(x̄, m̄)
defined in (2.3).

Let us assume that

g(x(T )) < g(x̄(T )),

and choose the following variationmλ of m for λ ∈ [0,1]
mλ(t) = (1− λ)m(t)+ λm̂(t).

Since the trajectoryxλ corresponding to the relaxed controlmλ continuously de-
pends uponλ it follows from the previous inequality that forλ ∈ (0,1] small
enough,

g(xλ(T )) < g(x̄(T )).

This implies that(xλ,mλ) satisfies the constraint (3.6), but because of the obvious
relation

J (mλ) = (1− λ)J (m) < J (m)
we conclude thatm is not an optimal solution for the optimal control problem
(3.5)–(3.6). This contradiction implies that the assertion of the Lemma is valid.
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In order to derive the necessary optimality conditions characterizing the opti-
mal solution(x,m) of the control problem (3.5)–(3.6), we consider the following
control problem

Minimize

I (m′) = max{J (m′)− J (m), g(x′(T ))− g(x̄(T ))} (3.7)

over the set of all admissible pairs(x′,m′) of (2.2).
It is easy to see that the optimal solution(x,m) for the optimal control problem

(3.5)–(3.6) is also an optimal solution for this control problem. This implies that

I ′(m;m′) := lim
λ↓0

I (mλ)− I (m)
λ

≥ 0, (3.8)

where the variationmλ of m is defined by (3.1) for an arbitrary relaxed controlm′.
Now we consider a set00 of functionsγ (t, u) defined as follows

γ (t, u) =
∞∑
i=1

1

2i (1+ ‖φi‖C)ρi(t)φi(u),

where the measurable functions{ρi}i≥1 satisfy the following relations for a.a.t ∈
[0, T ]
−1≤ ρi(t) ≤ 1.

Thus, every elementγ of 00 is determined by the the measurable functions{ρi}i≥1

which are called components. Letγ n, n = 1,2, . . . , be a sequence of elements of
00 with components{ρni }i≥1.

By definition, the sequenceγ n converges toγ ∈ 00 when for everyi ≥ 1 the
sequence of measurable functionsρni weakly converges toρi asn→∞. Note that
for this notion of convergence the set00 is sequentially compact.

Let a set0 consist of allγ ∈ 00 such that

ρi(t)

(∫
U

φi(u)m(t|du)−
∫
U

φi(u)m̂(t |du)
)

=
∣∣∣∣∫
U

φi(u)m(t|du)−
∫
U

φi(u)m̂(t |du)
∣∣∣∣ .

For anyγ ∈ 0 one has∫
U

γ (t, u)m(t|du)−
∫
U

γ (t, u)m̂(t|du)
= ‖m(t)− m̂(t)‖w for a.a.t ∈ [0, T ]. (3.9)

Note that the set0 is convex and sequentially compact, as well.

jogo500.tex; 27/08/1998; 11:46; p.11



120 F.H. CLARKE, J.-B. HIRIART-URRUTY AND Yu.S. LEDYAEV

By using sequential compactness of00, 0 and a standard technique for finding
directional derivatives of amax-like functional (3.7) (see Clarke, 1983) we can
calculate the limit in (3.8) in terms of the set0

I ′(m;m′) = max
α∈[0,1]

max
γ∈0

G(α, γ,m′) (3.10)

where

G(α, γ,m′) :=(α
∫ T

0
(

∫
U

γ (t, u)m′(t|du)−
∫
U

γ (t, u)m(t|du))dt
+ (1− α)〈g′(x(T )),1(T )〉

and1(t) is a solution of the equation (3.2).
It follows from (3.8) and (3.10) that

min
m′∈M

max
α∈[0,1]

max
γ∈0

G(α, γ,m′) ≥ 0.

Note thatG is a linear functional of each of its variables when the two other vari-
ables are fixed. This means that we can use the non-symmetric minimax theorem
from Borwein and Zhuang (1986):

min
m′∈M

max
α∈[0,1]

max
γ∈0

G = max
α∈[0,1]

min
m′∈M

max
γ∈0

G = max
α∈[0,1]

max
γ∈0

min
m′∈M

G

to obtain from the previous inequality that there existsα ∈ [0,1] andγ ∈ 0 such
that the following relation holds

min
m′∈M

G(α, γ,m′) ≥ 0.

This implies that for anym′ ∈M

0≤α
∫ T

0
(

∫
U

γ (t, u)m′(t|du)−
∫
U

γ (t, u)m(t|du))dt

+ (1− α)
∫ T

0
(H̃ (p(t), x(t),m′(t))− H̃ (p(t), x(t),m(t)))dt (3.11)

wherep(t) is defined in (2.4). (Note that we used the representation for〈g′(x(T )),
1(T )〉 contained in (3.3) to writeG in the form (3.11)).

Recall that due to Lemma 3.1,(x,m) belongs toLg(x̄, m̄). This means that
(x,m) satisfies the maximum principle (2.5) and the nondegeneracy condition
(2.6).

We claim that

α > 0. (3.12)

Putm′(t) = δu′(t) where the controlu′ satisfies the relation

H(p(t), x(t), u′(t)) = min
u∈U

H(p(t), x(t), u) for a.a.t ∈ [0, T ].
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If α = 0 then it follows from (3.11) form′ just defined and from the maximum
principle (2.5) that

0≤
∫ T

0
[min
u∈U

H(p(t), x(t), u)−max
u∈U

H(p(t), x(t), u)]dt.

But this contradicts (2.6) for(x,m). This contradiction implies that (3.12) is true.
We use (3.12) to derive from (3.11) and the maximum principle (2.5) that one

has for anym′ ∈M∫ T

0

(∫
U

γ (t, u)m(t|du)−
∫
U

γ (t, u)m′(t|du)
)
dt

≤ 1− α
α

∫ T

0
[H̃ (p(t), x(t),m′(t))−max

u∈U
H(p(t), x(t), u)]dt ≤ 0.

Then we replacem′ by m̂ in this relation and use the property (3.9) ofγ (t, u) to
obtain∫ T

0
‖m̂(t)−m(t)‖wdt ≤ 0.

This means that̂m = m which contradicts (3.4) and the definition ofm̂. Thus, the
pair (x̄, m̄) is globally optimal.
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