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Abstract. Let a trajectory and control pai, i) maximize globally the functiong}(x(T)) in the

basic optimal control problem. Then (evidently) any pairu) from the level set of the functional

g corresponding to the valugx (7)) is also globally optimal and satisfies the Pontryagin maximum
principle. It is shown that this necessary condition for global optimalityxofi) turns out to be a
sufficient one under the additional assumption of nondegeneracy of the maximum principle for every
pair (x, u) from the above-mentioned level set. In particular, if the g&il) satisfies the Pontryagin
maximum principle which is nondegenerate in the sense that for the HamiltBhiae have along

the pair(x, 0)

maxH # minH on[0, T],
u u

and if there is no another paix, u) such thaig (x (7)) = g(x(T)), then(X, 0) is a global maximizer.
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1. Introduction

Let us consider a control system

x(@t) = f(x(),u@®), x(0) = xo, (1.1)

where a measurable function: [0, T] — U with values in a compact séf c
R is called a control and an absolutely continuous functisn: [0, 7] — R*
satisfying (1.1) is called #&ajectory corresponding to the contral. Any pair
(X, u) satisfying (1.1) is calleén admissible pair

In this paper we provide a test to verify that a given admissible @ai) is a
global solution of the followindasic optimal control problem

PROBLEM ) Maximize the functional
g(x(T)) (1.2

over the set of all admissible pai(g, u).
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The best known test for global optimality stems from the Legendre-Carathéodory
approach to sufficient conditions in the calculus of variations and is based on the
verification function technique (for an account of the earlier application of this
method in optimal control see Krotov, 1993).

In general, a differentiable verification function can fail to exist but it was shown
(see Clarke, 1983) that there always exists a nonsmooth one. A particular choice
is a certain value function, which establishes the link between the verification
function technique and Bellman’s dynamic programming approach (see Bellman,
1957). As with that approach, the method of verification functions becomes more
problematic as the dimensienincreases.

The alternative to the dynaming programming method for finding optimal solu-
tions of optimal control problems is based upon the Pontryagin maximum principle
(see Pontryagin et al., 1962) which gives necessary conditions satisfied by the
optimal controlti and the trajectorg in terms of the Hamiltonian (or Pontryagin
pseudo-Hamiltonian in Clarke, 1983)

H(p,x,u) = (p, f(x,u))

and solutiorp of the adjoint equation

p(t) = —H.(p(1), ¥(t), ii(t)), p(T) = g.(Z(T))

in the following way.

PONTRYAGIN MAXIMUM PRINCIPLE. If a pair (X, 0) is an optimal solution
for the optimal control problem#®) then for a.a. (almost all) € [0, T] one has

H(p®), x(@), u(t)) = maxH (p(1), x(t), u).

The complexity of finding the trajectory and control satisfying the maximum prin-
ciple does not increase essentially with the growth of the dimensifrthe state
vector. But we should note that, in general, the maximum principle is saffa
cientcondition for global optimality ofX, 0) . It is only a necessary condition for
optimality and, moreover, it is a necessary condition for merely local optimality of
X.

Nevertheless, the maximum principle becomes a sufficient condition for opti-
mality of (X, i) under some additional assumptions about the control system (1.1)
and the functional (1.2). For example, let us assume that the funci®ooncave
and the system (1.1) is linear

x(t) = Ax(t) + h(u), (1.3)

whereh : U — R is a continuous function. It is well known that in this case
the Pontryagin maximum principle is a sufficient condition for global optimality of
(%, 0).
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In the present note we consider sufficient conditions for global optimality of
admissible pairgx, U) which are based on the maximum principle. But we make no
structural assumptions on the problem’s data such as linearity. Instead, conditions
for global optimality are stated in terms of the level g&t(X, U) of the functiong
(1.2) consisting of all admissible pai¢g, u) of the control system (1.1) satisfying
the equality

g(x(T)) = g(x(T)). (1.4)

It is clear that if(X, 0) is a globally optimal admissible pair, then every pairu)
from £, (X, 0) is also globally optimal. This implies that each sughu) satisfies
the Pontryagin maximum principle:

H(p@),x@),u()) = m%XH(p(t), x(@),u), fora.a. re[0,T], (1.5

wherep(t) is the solution of the adjoint equation

p) = —H (p(®), x(), u(®)), p(T) =g, (x(T)). (1.6)

Thus we have that a necessary condition for global optimalitgxoi) is the ful-
fillment of the maximum principle (1.5)—(1.6) fany pair (x, u) from the level set
Lg(X, 0).

The main result of this note asserts that this necessary condition for global
optimality of the pair(X, ) becomessufficientunder the additional assumption
that the maximum principle (1.5) iondegeneratéor each pairx, u) € £L,(X, 0),
namely: for any(x, u) € £,(X, ) there existg < [0, T'] such that

maxH (x(z), p(v), u) > milgl H(x(7), p(7), u). (1.7)
ue ue
This regularity assumption means that

maxH (x(r), p(1), u) # minH (x(t), p(), u)

ue ue

on [0, T] and that the maximum principle (1.5) gives a non-trivial characterization
of the controlu.

Strictly speaking, these sufficient conditions for global optimality are valid un-
der the assumption that the attainability set

Ar(xo) = {x(T) : X is an arbitrary trajectory of (1.1)

is closed . This is true , for example, whetix, «) is affine inu andU is convex,
or for a linear system (1.3).

In the next section we use the conceptrelaixed control (Warga, 1972) to
formulate analogous necessary and sufficient conditions for global optimality in
the general case of a nonlinear control system (1.1).
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We should note that an approach to global optimality using level sets of the
maximizing functional was suggested in Strekalovskii (1990) for the general prob-
lem of maximizing aconvex functional £ on a setC. Necessary conditions from
Strekalovskii (1990) forx to be a global maximizer become sufficient under the
additional assumption thatis not a global minimum of on C. These conditions
must be verified at any point ( even outside of” ) such that/(x) = ¢(x). This
increase in the number of necessary conditions to verify is beneficial when they are
used to eliminat& as a candidate for global maximizer. However, it is desirable to
verify a lesser number of sufficient conditions to insure khiata global maximizer.

Such conditions were suggested in Hiriart-Urruty and Ledyaev (1996) where
the problem of maximizing general nonlinearfunctional ¢ on aconvex closed
setC was considered. These sufficient conditions must be verified at points of a
relevant level seonly in C. Thus, even in the case of a convex functiofathe
number of sufficient conditions to verify is less than in Strekalovskii (1990).

Optimal control problems#) with convex functionsg for general control sy-
stems(1.1) were considered in Strekalovskii (1995). Under the assumption that the
attainability set4 7 (xo) is closed (it is assumed erroneously in Strekalovskii (1995,
p.88) that lipschitzness gf(x, u) is enough for this) the set of necessary conditions
for global optimality is obtained (it includes relations stated in terms of points lying
outside of the attainability set). It was shown, that under the additional hypothesis
that an admissible pair in questigr, U) is not a global minimum, these necessary
conditions become sufficient ones.

In this note the general optimal control problem wgémeral nonlineafunction
g is considered. Since the set of relaxed controls is convex, the approach based on
Hiriart-Urruty and Ledyaev (1996) can be adapted to this problem. The sufficient
condition for global optimality is formulated in terms of the Pontryagin maxi-
mum principle and an additional mild nondegeneracy hypothesis for this maximum
principle.

These results are also closely related to conditions for global optimality for the
basic problem in calculus of variations such as obtained in Clarke et al. (1997).

2. Basic assumptions and main theorem

Let R" be then-dimensional euclidean space with inner prodict) and norm
|x| = (x, x)¥2. The space of continuous functions [0, T] — R" equipped with
the norm

X|| = max |x (¢
Xl = max (1)
is denoted byC", the space of continuous functiops U — R with the norm
ollc = max|e(u)]
uelU

is denoted byC (U).
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The following assumptions provide the existence and uniqueness of an ab-
solutely continuous solutior of the equation (1.1) for any contral

HYPOTHESIS A.
Al. The functionf(x, u) and its partial derivativef;(u, v) are continuous on
R* x U.

A2. There exists a constant> 0 such that for any(x, u) e R" x U
(x, f(x,w)) <al+|x%).

Such a solution is called a trajectory corresponding to the countrbt general,
the set of all trajectories i€” is not closed inC", so we cannot assert even the
existence of an optimal solution in the optimal control problem®).(To overcome
this difficulty we use the concept of a relaxed control. This concept originated
from L.C.Young’s theory of generalized curves . In the context of classical optimal
control theory it was introduced in Warga (1962).

LetU C R” be a compact set , let frifl) denote the linear space of Radon
measures: onU, that is, finite regular Borel measures©@nThe weak nornjl - ||,
in frm (U) is defined as follow

: 2.1)

> 1

m|y = —_— ;(uw)ym(du
I ; 21+ l¢illc) /U(/) (ym (i)
where {¢;}2, is a dense countable subset ©{U). The setM = rpm(U) of
Radon probability measures is convex and compact in the ggaoe(U), || - ||.)-
A measurable functiom : [0, T] — M is called aelaxed contral It is known (see
Warga, 1972; Krasovskii and Subbotin, 1974) that[0, T] — M is measurable
if and only if the function

t—>/¢(u)m(t|du)
U

is measurable for any € C(U).

The setM of all relaxed controls is convex and sequentially wealdgmpact
(see Krasovskii and Subbotin, 1974). We recall that weadnvergence of the
sequence of relaxed contraty to the relaxed contrah means that

T T
_Iim/ dt/q)(t, u)m; (t|du) :f dtf¢(t,u)m(t|du)
i—0o0 Jo U 0 U

for any functiong (¢, 1) such that the mapping € [0, T] — ¢(,-) € CU) is
measurable.

Under Hypothesis A, for an arbitrary relaxed contmolthere exists a unique
solutionx of the following equation

X(1) = f(x(®),m@), x(0) = xo, (2.2)
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where
Faeom) = fU F e, wm(du).

The pair(x, m) defined by (2.2) is called aadmissible pair

The important property of the solutiog, of (2.2) corresponding to the relaxed
controlm is its continuous dependence uponin the topology of weakconver-
gence onM. Since the set of relaxed contralg is weakly: compact , this implies
that the set of all trajectories corresponding to relaxed controls is compéét in
This implies that there always exists an optimal solutignm) for the following
optimal control problem

PROBLEM 2,.;) Maximize the functional (1.2) over the set of all admissible pairs
(X, m) for the system (2.2)

The connection between the original optimal control probleg®) &nd the op-
timal control problem (£,) is established by the fact that any trajectggyof the
control system (2.2) can be approximated’inby trajectories, of (1.1), namely:
for anym € M and anye > O there exists a contral such that

[Xm — Xull < €.

Thus, if (X, 0) is an optimal solution for the optimal control problew®), then
the pair(X, m) is an optimal solution for the optimal control problet,.{;) where

m(t) = 8z(1),

and whereS; (du) is the Dirac measure concentrated on vegtor

It was mentioned before that we could formulate conditions for global optimal-
ity without using the concept of relaxed control if we assume that the function
f(x, u) is affine inu andU is convex, or if the control system is linear (1.3). Note
that the introduction of relaxed controls in (2.2) is a way to ‘linearize’ an original
control system in the control variable sinfééx, m) in (2.2) is affine with respect
to the new control variable:.

Define the level set of the functional (1.2) consisting of admissible pairs)
for the control system (2.2) as follows:

Lo (X, M) = {(X, M) : g(x(T)) = g(x(T))}. (2.3)
For the pair(x, m) we define a solutiop of the adjoint equation
p6)=—H.(p(®), x(1),m@)), p(T) =g x(T), (2.4)
where

H(p,x,m) = (p, f(x,m)).
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Finally we make the following assumption about the funcigon (1.2)
HYPOTHESIS B.The functiong (x) is differentiable.

The main result of this note is given by Theorem 2.1 below.

THEOREM 2.1. Let Hypotheses A,B hold. If a paik, m) is globally optimal in
the optimal control problem#,.;) then the following condition C1 holds:
C1. For any(x, m) € £,(X, m) andp defined by (2.4) one has

H(p(), x(t), m(1)) = m%xH(p(t),x(t), u) fora.a.r € [0, T] (2.5)

The condition C1 is sufficient for optimality of a pai, m) if the following
condition C2 of nondegeneracy of the maximum principle (2.5) holds:
C2. For any(x, m) € £,(X, m) andp defined by (2.4) one has

m%XH(x(t), p(), u) £ miﬁr}H(x(z), p(),u) on [0, T]. (2.6)

Thus, summarily speaking, condition C1 is necessary for global optimality of
(X, m) and under the additional condition C2 it becomes sufficient, as well.

Of course, the fact that conditions (2.5) and (2.6) should be verified for every
admissible pair from the level set, (X, m) complicates the practical application
of such sufficient conditions. We consider now one special case when it is enough
to check the relation (2.6) only for an admissible g&irm) itself.

Consider a linear control system (1.3) and a convex fungtiin2). In this case
the optimal control problem is calldthear-convex

PROPOSITION 2.1. For a linear-convex optimal control problem, condition C2
holds for an admissible paik, m) whenever this pair is not a global minimizer of
the functionalg (x(T)).
Proof. Since(X, m) is not a global minimizer there exists an admissible pair
(Xg, Mp) such that
8(xo(T)) < g(x(T)).

Fix arbitrary (x, m) from .£, (X, m) and letp(¢) satisfy (2.4). Then it follows from
the convexity ofg for the linear system (1.3) that

T
/ (MiNnH (p(t), x(t), u) — maxH (p(t), x(t), u))dt
o ueU uel

T
S/O (H(p(), x(1), mo(t)) — H(p(t), x(t), m(1))d1

= (g, (x(T)), x0(T) — x(T)) < g(xo(T)) — g(x(T))
= g(xo(T)) — g(x(T)) <O.
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This strict inequality implies (2.6). O

It is well known that for a linear-convex optimal control problem an admissible
pair (X, m) delivers a global minimum to functional (1.2) if and only if it satisfies
the following minimum principle

H(p(r), (1), m(r)) = miur}H(ﬁ(t),i(t), u) fora.are[0,T]. 2.7)

This means that i{X, m) does not satisfy the minimum principle, then due to
Proposition 2.1 condition C2 holds for it. If, in addition, C1 holds f&rm) then
due to Theorem 2.1x, m) is a global maximizer.

It is clear that the converse is also valid for the linear-convex optimal control
problem (P) if it is non-trivial, in the sense that

max g(x(7)) > min g(x(T)), (2.8)

where maximum and minimum are taken over the set of all admissible trajectories.

Indeed, let(x, M) be a global maximizer for such a problem ; then it is not a
global minimizer and does not satisfy the minimum principle (2.7). Thus, we have
proved

COROLLARY 2.1. Let the linear-convex optimal control problem satisfy (2.8).
Then the admissible pafk, m) is global maximizer if and only if it does not satisfy
the minimum principle (2.7) and condition C1 holds.

Note that for the optimal control problem for a linear system (1.3) we can use
an ordinary measurable controlinstead of a relaxed one. Then the maximum
principle (1.5) replaces (2.5) and should be verified for any admissible>paiy
satisfying (1.4).

3. Proof of the main theorem

If (X, M) is a globally optimal pair in the optimal control problemw®,(;) then any
(X,m) € L,(X,m) is also globally optimal. Then condition C1 follows imme-
diately from the classical Pontryagin maximum principle. Nevertheless we present
here a proof of (2.5) based on the sliding variations method, not only for the sake of
completeness of exposition, but also because this is a convenient way to introduce
new notations.

For fixed (x, m) € £,(X, m) we choose an arbitrary relaxed control and
define a sliding variatiom” of the relaxed contrain

m*(t) = (1 — Mm(t) + ram' (1) (3.1)

wherei € [0, 1].
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Due to convexity ofM the functionm” is a relaxed control and the trajectory
x* of (2.2) corresponding to this control satisfies the following equation

() = fEH @), m@) + A(f @ @), m' @) = F&* @), m@))), x*(0) = xo.
It is easy to see that
X)) = x(t) + AA@) +r(h, 1),
whereA(r) is a solution of the following ‘equation in variations’

A@) = fl(x@), m)A®@) + fx@), m' (1)) — f(x(t),m()), A0 =0,
(3.2)

andr (A, 1)/ converges to 0 uniformly of0, 7] asA | O.
Since(x, m) is optimal we have that

im g (1)) — g(x(T)) <
A0 A

0.

In view of the representation far* (¢) it implies that

T
0> (g'(x(T)), A(T)) =/0 [H(p(t), x(t), m'(t)) — H(p(t), x(t), m(t))]dt,
(3.3)

wherep(t) is defined in (2.4).
The last relation in (3.3) follows directly from properties of solutions of the
adjoint equation (2.4) and the representation below\fam

Alt) = /O (1, )LF(x(s)m'(5)) — Fx(s), ms)ds,

whered®(z, s) is the fundamental matrix solution of linear equation
2(0) = fix(@), m(0)z(0).
It is clear that for any Radon probability measures M

H(p,x,m) <maxH (p, x, u).
ucl

It follows from Filippov Theorem on measurable selectors (see Warga, 1972; Clarke,
1983) that there exists measurable contraduch that

H(p(t),x(),u' () = m%XH(p(t), x(t),u) fora.arel0,T].

By choosing the relaxed contral' () = §,/(,, we derive from (3.3)

T
02/ [m%XH(p(t),X(t),u)—Fl(p(t),X(t),m(t))]dt-
0 ue
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Because of the previous inequality we have that the integrand in this relation is
non-negative, which implies that it equals 0 almost everywherg0o#]. Thus,
(X, m) satisfies the maximum principle (2.5) and condition C1 is proved.

Now we prove that under condition C2 on the nondegeneracy of maximum
principle the condition C1 is sufficient for global optimality &f, m).

Let us assume to the contrary that there exists an admissibléXpair) such
that

g(X(T)) > g(x(T)). (3.4)
Consider the following optimal control problem:
Minimize
T
sy = [ @) = o) (3.5)
0

over the set of all admissible pai(g’, m") of (2.2) satisfying

g(x'(T)) < g(x(T)). (3.6)

Since the functional (3.5) is weaklyower semicontinuous oM andg(x'(T))
continuously depends upan’, there exists an optimal solution of this problem
(3.5)—(3.6). We denote the optimal solution for this problenthym).

LEMMA 3.1. Under condition (3.4) the paitx, m) belongs to the level set, (X, M)
defined in (2.3).

Let us assume that
g(x(T)) < g(x(T)),

and choose the following variatian* of m for A € [0, 1]
m*(1) = (1= Mm(t) + Mi(r).

Since the trajectorx” corresponding to the relaxed control continuously de-
pends upon it follows from the previous inequality that for € (0, 1] small
enough,

g™ (1)) < g(x(T)).

This implies that(x*, m") satisfies the constraint (3.6), but because of the obvious
relation

Jm*) = (1 —=xr)J(m) < J(m)

we conclude thatn is not an optimal solution for the optimal control problem
(3.5)—(3.6). This contradiction implies that the assertion of the Lemma is valid.
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In order to derive the necessary optimality conditions characterizing the opti-
mal solution(x, m) of the control problem (3.5)—(3.6), we consider the following
control problem

Minimize

1(m") = max{J(m’) — J(m), g(x"(T)) — g(x(T))} 3.7

over the set of all admissible pai(g’, m") of (2.2).
It is easy to see that the optimal solution m) for the optimal control problem
(3.5)—(3.6) is also an optimal solution for this control problem. This implies that

Ay
I'(m; m) :=lim Hm?) — I(m) >

im - 0, (3.8)

where the variatiom” of m is defined by (3.1) for an arbitrary relaxed contnal
Now we consider a sty of functionsy (¢, u) defined as follows

y(t,u) = pi ()i (),

i 1
21+ ligillc)
where the measurable functiofys };>1 satisfy the following relations for a.a.<
[0, T]

—l=p@® =1

Thus, every element of I'y is determined by the the measurable functign$;-1
which are called components. Let,n = 1, 2, ..., be a sequence of elements of
"o with componentgp!'};~1.

By definition, the sequencg” converges tgy € I'o when for everyi > 1 the
sequence of measurable functiggfsweakly converges tp; asn — oo. Note that
for this notion of convergence the d&f is sequentially compact.

Let a sefl” consist of ally € T’y such that

pi(0) ( / ¢ (wym(t)du) — / ¢i<u>m<r|du>)
U U

_ ‘ / 1 GOy (1) — / 1 )i (1)
U U

For anyy € T" one has

/ y (¢, uym(t|du) —f y (¢, wyn(t|du)
U U
= |lm(t) —m()||, fora.ar [0, T]. (3.9)

Note that the sef is convex and sequentially compact, as well.
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By using sequential compactnessIgf I and a standard technique for finding
directional derivatives of anaxiike functional (3.7) (see Clarke, 1983) we can
calculate the limit in (3.8) in terms of the sEt

I'(m;m’) = max maxG(«, y, m’) (3.10)
«a€l0,1] yell

where

T
G(a,y,m) :=(a/ (/ y(t,u)m'(t|du) —/ y(t,u)m(t|du))dt
o Ju U
+ (11— a) (g’ (x(T)), A(T))

andA(r) is a solution of the equation (3.2).
It follows from (3.8) and (3.10) that

min max maxG (a, y, m’) > 0.
m'eM ael0,1] yel’

Note thatG is a linear functional of each of its variables when the two other vari-
ables are fixed. This means that we can use the non-symmetric minimax theorem
from Borwein and Zhuang (1986):

min max maxG = max min maxG = max max min G
meM «€l0,1] yel «el0,1] meM yel ael0,1] yel' meM

to obtain from the previous inequality that there exists [0, 1] andy e I'" such
that the following relation holds

min G(a, y,m’) > 0.
meM

This implies that for anyn’ € M
T
050{/ (/ y(t,u)m’(tla’u)—/ v (t, wym(t|du))dt
o Ju U

T
+(1—a)/0 (H(p(t), x(t), m' (1)) — H(p(t), x(1), m@))dr  (3.11)

wherep(z) is defined in (2.4). (Note that we used the representatiofgfatr (7)),
A(T)) contained in (3.3) to writ& in the form (3.11)).

Recall that due to Lemma 3.1x, m) belongs to., (X, M). This means that
(X, m) satisfies the maximum principle (2.5) and the nondegeneracy condition
(2.6).

We claim that

a > 0. (3.12)
Putm’(t) = 8, where the controli’ satisfies the relation

H(p®),x(),u' ()) = miﬁr}H(p(t), x(),u) fora.a.r e[0,T].
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If @ = 0 then it follows from (3.11) fom’ just defined and from the maximum
principle (2.5) that

T
0< f [min H (p(0), x(1), ) — MaXH (p(1), x(), w)ld.
0 ue ue

But this contradicts (2.6) fogx, m). This contradiction implies that (3.12) is true.
We use (3.12) to derive from (3.11) and the maximum principle (2.5) that one
has for anym’ € M

T
f (f y (¢, w)ym(t|du) —f y(t, u)m/(t|du)> dt
0 U U

— T
= ! o - / [H(p(), x(1), m/(l‘)) — m%XH(p(t)’ x(t), u)]dt < O.
0 ue

Then we replacen’ by rm in this relation and use the property (3.9)0ft, u) to
obtain

T
f |71 (t) — m(t)||,dt < O.
0

This means thath = m which contradicts (3.4) and the definitiondf Thus, the
pair (X, M) is globally optimal.
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